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Abstnd. The phenomenological renormalization group method introduced by Barber for 
equilibrium spin models is extended to stochastic cellular automata exhibiting continuous 
phase transitions from a quiescent state to an active one. me method is applied to the 
Domany-Kinzel model, which contains bond and site directed percolation in 1+1 
dimensions as special cases. A new universality class with critical exponents close IO, but 
definitely different from, the ones of directed percolation is predicted. Finitesize scaling 
analysis and Monte Carlo simulations provide further support to this result. 

Non-equilibrium continuous phase transitions from an active phase to a unique 
absorbing state characterize a wide class of dynamical models dealing with contact 
processes. Despite their usually simple definition in terms of local irreversible evolution 
rules, these models, also known as inieractingparticle systems [l], are hardly solvable. 
Apart from a few exact results in 1 + 1 dimensions [Z] a variety of techniques, ranging 
from series analysis /3], Monte Carlo methods [4-61 to field-theoretic renormalization 
group [7-10], have been applied to obtain critical exponents and phase diagrams. 

All the results obtained in 1 + 1 dimensions seem to provide strong support to the 
conjecture [4,6,10] that all these systems belong to the unique universality class of 
Reggeon field theory. In particular, their critical behaviour is expected to exhibit a 
continuous phase transition from an  asymptotic absorbing state (guiesceni phase) to 
an active phase. This suggests that renormalization group methods may be appropriate 
tools to face this kind of problem. 

In this letter we propose an extension to probabilistic cellular automata of the 
phenomenological renormalization group (PRO) originally proposed by Barber [ 1 I ]  

the finite-size properties of the correlation length. 
Directed phenomena are usually modelled by local Markov processes on a regular 

spacetime lattice A, where the time axis plays the role of a privileged direction. We 
indicate with r and f the space and time coordinates on A; the vector k represents the 
set of parameters of the model. We define the distance of k from the critical surface 
S i n  parameter space as e(k) = infkCEslk - k,l. The difficulty of applying renormalization 
group methods to these models is that the correlation length g scales asymmetrically 
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with respect to spatial (eL- E-"')  and temporal (511 - E - " I I )  directions [12]. Asymmetric 
scaling factors can be avoided if the system can be considered infinite in some direction. 
The transfer-matrix approach studied by Kinzel [ 131 considers the asymptotic behaviour 
of spatially finite systems, so that the scaling exponent Y~ is related to the spatial 
correlation length. 

We propose to consider spatially infinite systems, and to apply the PRG to finite-time 
quantities. 

We need to identify the scaling properties near the critical surface of some suitable 
observable. For instance, good candidates for directed percolation are the scaling 
functions studied in [4]. For this purpose, let us point our attention on the scaling 
properties of the spacetime correlation function C(r ,  t, E ) ,  which is proportional to 
the probability of having an active site in r at time t, given an initial condition with 
only one active site in the origin; E represents a measure of the distance in parameter 
spsce kern !!IC critic.! s.6.ce. 

Assuming homogeneity properties of C(r ,  t, E )  around E = O  we can write 

where d is the space dimension, b is the space scaling factor, f l  is the exponent 
associated with the average number of active sites at the critical surface and z = uII/ uL. 

From a practical point of view it is more convenient to study the scaling behaviour 
of suitable observables derived from C(r ,  t, E ) ,  e.g. 

which satisfies the scaling relation 

n( t ,  E )  = 1% -, ~ " " I I E  c ) 
where 1 = b'. 

As shown in [4], this function allows a good determination of the critical point for 
directed percolation. Moreover, regarding Monte Carlo simulations, it has better 
statistical properties than any other function studied in the literature [4-61. 

If the model contains m parameters, the PRG transformation is defined by the map 

k' = RI,,( k )  (3) 

which can be expressed implicitly through a set of m equations imposing the scaling 
invariance of n( t ,  E ( k ) ) ,  

with ti > t j + l .  This set of equations is solved for fixed k and ti, obtaining the values 
of k'. 

In general the PRG is expected to approximate better and better the phase diagram 
as f,+, increases, while it should not depend significantly on the choice of 1. 

We apply this method to the Domany-Kinzel model [2,13], which is the simplest 
version of directed phenomena in 1 + 1 dimensions. The model is defined on a tilted 
square lattice. The active (quiescent) state is represented by the symbol 1 (0). In the 



Letter to the Editor L1073 

language of interacting particle systems the local evolution rule is defined by the 
transition probabilities 

T(0,  o+ 1) = 0 

T(0 ,  1 + I ) =  T ( 1 ,  o+ 1) = p  

T ( 1 ,  1 + 1) = 4 

T ( X , J ” O ) = l  - 7(X,y+ 1) x, y = 0, 1 

The usual directed percolation corresponds to q = p  for the site problem and to 
q = p ( 2 - p )  for the bond problem. The model can be solved exactly on the line q = 1 
[2,131. We have also proved that an exact solution can be obtained on the line q = 2 p ,  
where n ( t )  = ( 2 p ) ‘ ;  the critical point at p =+ is characterized by mean-field critical 
exponents q = 0 and vII = 1. 

Since the model depends on two parameters, the PRO requires the calculation of 
the function n for six different values of 1,. We have used a modified version of an 
algorithm proposed in [14]: due to the left/right symmetry of the model the algorithm 
allows to compute n ( t ,  e ( k ) )  applying the transfer matrix method to a configuration 
of size t / 2 .  The function n ( t , ,  e ( k ) )  has been calculated up to 1 , =  T = 3 6 ,  which 
corresponds to a maximum cluster of 630 sites. We have chosen 1, - t,+, equal to the 
minimum value such that t J l  is an integer for any i. 

The critical line and the fixed points of the PRG flow (3) are obtained by solving 
numerically equation (4) in p and q. The complete bifurcation diagram for T = 24 and 
1=2 is reported in figure 1. In the following we shall make reference to the notations 
introduced in this figure, where H, , Hz and R are the upper hyperbolic, lower hyperbolic 
and fully unstable fixed points, respectively. 
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Figure I. Phase diagram and PRG flow for T = 24 and I = 2. H, and H2 are the hyperbolic 
fixed points, and R is the unstable fixed point. The model is solvable on the lines q = 1 
and q = 2p (dot-dashed) which are natural boundaries for the PRG flow. 7he upper dashed 
curve and the lower dashed line correspond IO the bond and site percolation problems, 
respectively. It is worth recalling that, at variance with this pinure, for T Z U  the bond 
percolation critical point belongs to the basin of attraction of H2, i.e. R has shifted above 
the upper dashed curve. 
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The exponent 7 is computed by thescaling relation (2), while the exponent vi, is 
obtained by linearizing the map (3) in the vicinity of the hyperbolic fixed points. The 
coordinates of the fixed points and the corresponding exponents are reported in table 
1 for different values of T and I. 

Table 1. Results for the PRO fixed points and exponents for various T and 1. 'The algorithm 
fails for some renormalization schemes (dashes). The estimated errors are of the order of 
unity an the last digit. 

20 
21 
24 
24 
24 
24 
25 
28 
30 
32 
36 

j 0.618 
i 0.618 
2 0.618 
8 0.616 
$ 0.615 
f 0.617 
8 0.617 
2 0.615 

0.6113 
2 0.6124 
2 0.6099 

0.919 
0.921 
0.922 
0.925 
0.925 
0.922 
0.925 
0.926 
0.9311 
0.9297 
0.9328 

0.333 
0.334 
0.334 
0.334 
0.332 
0.333 
0.332 
0.333 
0.3313 
0.3317 
0.3306 

1.783 
1.783 
1.785 
1.783 
1.779 
1.784 
1.780 
1.783 
1.7825 
1.7787 
1.7760 

- 
0.783 
0.777 
0.783 
0.783 
0.783 
0.784 
0.776 
0.7939 
0.7818 
0.7858 

- 
0.253 
0.308 
0.258 
0.259 
0.256 
0.249 
0.308 
0.1569 
0.2687 
0.2325 

- 
0.315 
0.317 
0.315 
0.315 
0.3 15 
0.315 
0.317 
0.3127 
0.3152 
0.3137 

- 
1.732 
1.745 
1.741 
1.739 
1.739 
1.736 
1.745 
1.7392 
1.7356 
1.7313 

0.665 
0.660 
0.669 
0.656 
0.654 
0.655 
0.652 
0.661 

0.655 
0.648 

- 

0.840 
0.838 
0.827 
0.850 
0.856 
0.853 
0.860 
0.840 

0.854 
0.861 

- 

The qualitative features of the phase diagram in figure 1 do not change as T and 
I are varied. Both the critical line and the critical exponents show a very weak 
dependence on T and 1, while the location of the fixed points seem to depend more 
signikantiy on these parameters. Aauaiiy, as T increases, I+, and R siighriy shift 
towards the unstable (mean field) fixed point p = f ,  q = 1. 

The PRG predicts the existence of two universality classes with different critical 
exponents. Their values are so close that a cross-over phenomenon could have been 
easily underestimated in Monte Carlo and series analysis. 

Up to T=36  the site and bond percolation problems appear to belong to different 
universality classes. This scenario contrasts with the results reported in the literature 
[3]. In order to obtain a more accurate prediction about the universality class of the 
bond percolation, we followed one step of the PRG flow starting from the critical point 
of this model with larger values of T. For T=40 the flow tends towards H,, while for 
T =  44 the bond percolation problem is mapped towards Hz, i.e. it belongs to the same 
universality class of the site problem. It is reasonable to conjecture that this remains 
true as T is further increased. 

The analysis of the PRO flow near R appears quite difficult because, independently 
of T and I, the eigenvalue corresponding to the eigendirection transverse to the critical 
line is very close to 1, i.e. a marginal case. This suggests the existence of a line of fixed 
points crossing the critical line at R. Anyway, our numerical analysis does not allow 
any conclusion on this point. Nevertheless, it would be interesting to calculate the 
critical exponents associated with R, which represents a third universality class in 
itself. It is possible that analysing an extended parameter space, R acquires one or 
more attractive eigendirections associated with its domain of attraction. 

We have checked the PRG scenario by means of finite-size scaling analysis [I51 and 
Monte Carlo simulations [4-61. 
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Regarding the former method we have exploited the scaling relation (2) in order 
to evaluate the critical exponents and p ,  for any q at finite T. More precisely, we have 
computed the value of p .  = pc( T, q )  satisfying the equation 

For this solution both sides of this equation give the corresponding value of T (  T, 4). 
The plots of the resulting critical lines p,(T, q )  and v ( T ,  q )  for different values of 

T are reported in figures 2 and 3, respectively. As shown in figure 2, the critical line 
is quickly approached as T increases, except near q = 0 where, moreover, the distance 
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Flgure 2. The critical line p.( T, 4) from equation ( 5 )  for T = 8, 10,. . . ,30 from left to right. 

0.2 0.22 0.24 0.26 0.28 0.3 0.32 

0.9 

0.8 

0.7 

0.8 

q 0.5 

0.4 

0.3 

0.2 

0.1 

0 

1 

a.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 a , , 1 0.1 

0 

0.2 0.22 0.24 0.26 0.28 0.3 0.32 

rl 

Figure 3. The exponent q( T, q )  versus q from equation ( 5 )  for T = 8, IO.. . . ,30 from left 
to right. 
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between successive approximations does not decrease monotonically. Looking at figure 
3, one can infer the presence of the two hyperbolic fixed points from the behaviour 
of q( T, q ) .  In fact, the hyperbolic fixed points are in correspondence with the faster 
convergence of the exponent q to its two different asymptotic values. For q + 1, q 
rapidly converges to its mean-field value q =O. 

Following the suggestions of [16] we can improve this method by conjecturing that 
first-order corrections to finite-size scaling for p,(T, q )  are expressed by 

pc( T, q )  =pC(W, 9) - At-xi'.qi 

with 

In figure 4 we plot this function against g for different values of T. In the spirit of 
PRO, the intersections of the curves locate the hyperbolic fixed points HI and H2. 
Notice that H, uniformly approaches its asymptotic values. On the contrary H2 shows 
a more irregular behaviour. This effect was also present in the results reported in table 
1. Anyway, the values of ,y at the two fixed points are manifestly different. 

I 2 3 4 5 6 7  

1 

0.9 

0.8 

0.7 

0.6 

p 0.5 

0.4 

0,3 

0.2 

0.1 

0 

1 2 3 4 5 6 7  

X 

Figure 4. The exponent x defined in equation (6) versus q for different T. 

Monte Carlo simulations allow a further independent check of the presence of the 
two universality classes by direct computation of critical exponents. We have calculated 
the exponents q, S and z related to the mean number of active sites n ( f ) -  f", to the 
survival probability P ( f ) -  f - 6  and to the mean radius of the active region R ( f ) -  tl", 
respectively. We have performed the simulations for q = 0.925 (i.e. near HI), q = p ( 2  - p )  
(bond percolation), q = p  (site percolation) and q=O.25 (i.e. close to H2).  We have 
averaged over 6 x lo4 runs, up to time T = 10 000. 

The results confirm that the bond and site percolation problems do belong to the 
universality class of Hz for which q =0.314(1), 6 =0.160(5) and z = 1.58(1), while for 
q=O.925 we have found p,=0.61470(5), q=0.330(2), S=O.152(2) and z=1.60(2). 
The figures in parentheses indicate the uncertainty on the last digit. 
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Extensions of our PUG method to include a third independent critical exponent 
and/or a third parameter (e.g. the ‘external field’ h = T ( O , O +  1)) and applications to 
(2+ 1)-dimensional cellular automata will be the subject of future investigations. 

We acknowledge useful discussions with B Demda, M Droz and S Ruffo. Three of us 
(FB, RL and AM) thank IS1 in Turin for its kind hospitality during the workshop 
Evolution and Complexity 1991, where this work progressed significantly. RB thanks 
CONACYT and DGAPA-UNAM of Mexico for partial financial support. 
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